
aeroqual

Check particle profiler for leaks

Written By: Tanya Taylor

INTRODUCTION

A leak can be caused by loose connections, worn seals (o-rings) or split tubing.

If a leak occurs, this can affect the flow rate which will have a big impact on the accuracy of the measurement.

To understand how often you should perform this service activity, click here.

PARTS:

- Leak gauge (1)
- Luer fittings (1)

Step 1 — Enter service mode

Normal operation									
Calibration	Manual se	rvice mo	de S	tart					
History	Calibratio	on parar	neters						
Manual Entry		NO2 ppb	Ox ppb	O3 ppb	O3 raw	PM2.5 raw µg/m³	PM2.5 µg/m ³	TEMP °⊂	RI %
	Gain	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.0
	Offset	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.
	a	1.100		2.550					
	b			1.870					
	Real time measurements								
	Time	NO2 ppb	Ox ppb	O3 ppb	O3 raw	PM2.5 raw µg/m³	PM2.5 µg/m ³	TEMP °C	R 9
	11:42 a.m.	2.9	29.6	24.2	23.7	1.7	1.1	15.74	86
	11:41 a.m.	2.8	29.2	24.0	23.5	1.6	1.0	15.63	86
	11:40 a.m.	3.1	29.7	24.2	23.8	1.9	1.2	15.60	86
	11:39 a.m.	3.6	30.2	24.1	23.7	1.5	1.0	15.55	87
	11:38 a.m.	4.7	30.4	23.4	23.0	1.3	0.8	15.48	87

 Enter service mode so any fluctuations in the data caused from this activity can be excluded from air quality reports.

Step 2 — Open sample & block purge

- Adjust the sample flow by pulling the adjustment knob outwards, turning the knob to increase/decrease flow, and pushing the knob back in to lock when desired flow has been reached.
- Fully open the sample flow adjustment valve, which is located on the face plate of the pump module.
 - On older monitors, the sample flow adjustment value is positioned at the bottom of the enclosure under the PDI cover.
- Block the purge flow by pinching the purge tube.
 - (i) On older monitors, block the purge flow by disconnecting the purge line and capping the purge line and ports with luer caps.

Step 3 — Attach gauge

- Remove the TSP inlet and place the vacuum gauge on the inlet.
- Wait for the gauge to stabilise.
- (i) The gauge should reach at least -60 kPa while power is connected.

Step 4 — Observe pressure change

- Stop the sample pump by pulling out the black and red power cable from the electronics module.
- Count how long it takes for the pressure to change by 10 kPa.
- (i) If the pressure change (leak rate) is greater than 10 kPa in 10 seconds, you'll need to check for loose connections, worn seals (o-rings) or split tubing.
- *(i)* For example, if the needle moves from -70 kPa to -60 kPa in 20 seconds, this is OK, but if if moves from -70 kPa to -60 Kpa in 8 seconds, this indicates a leak.

Step 5 — Record in journal

All journal types 🔻							
1. Site Inspection:	No new local emission sources	2. Instrument inspection:					
	Instrument in good condition	Cooling fan operational					
	No obstructions to monitoring equipment	PM and gas inlet secure					
3. Equipment:		Instrument has been running at stab					
	on calibrator: Aircal 1000						
Aeroqual Ozone cal							
Aeroqual Flow meter	er AQM R7	4 Gas cylinders:					
		CO 1000 ppm in Air (expiry Mar					
		SO2 20 ppm in Air (expiry Dece					
		NO2 20 ppm in Air (expiry Nove					
	Expected flow rate = 0.450 ml per min,						
	Measured flow rate = 0.452 ml per min	Open door and change gas inlet filt					
Main inlet flow rate	OK, individual module flow rates were not measured.						
6. Zero calibration							
All modules passed	zero calibration, all modules were stable and all offsets were	e within acceptable limits.					
7. Span Calibration							
CO @ 10.00 pm	Module response was 8.95 ppm gain adjustment to 1.15	pass					
SO2 @ 0.2 ppm	Module response was 0.210 ppm gain adjustment to 0.92	pass					
NO2 @ 0.2 ppm	Module response was 0.090 ppm gain adjustment to 2.10	pass (module may need replacing soon contact A					

- Record the results of this service activity in the monitor's journal.
- Exit service mode.

For further support, contact <u>Technical Support</u>.