aeroqual

Calibration - PMX flow

How to perform a flow calibration with your Aeroqual Ranger | Dust (PMX sensor head).

Written By: Margaret Grattan

INTRODUCTION

Continued use in high-aerosol concentrations may affect the flow of the PMX sensor. If you wish to calibrate the flow of the Ranger|Dust instrument, you may do so with the help of a flow meter.

Because the presence of the flow meter in the flow path will cause some restriction, it will directly affect the flow rate reading.

TOOLS:	DARTS:
• Flowmeter - TSI 4140 (1)	 3/16" (4.8mm) ID flexible tubing, 2" (50mm) length (1)

Step 1 — Find the conversion factor for the model of reference flow meter you are using in Table 1

Aeroqual Ranger TM Du	st
Device	Conversion factor
TSI 4140, filter removed	1.43
Pubble flow motor	4.00
Bubble now meter	1.00

- Note down the CONVERSION FACTOR (CF) from this list of commonly used reference flow meters.
- (i) The CF varies by flow meter model.

(i) If your flow meter is not on this list proceed to step 2, otherwise go to step 3

Step 2 — Measure the flow meter specific conversion factor

Conversion factor CF for the TSI 4140:

$$CF = \frac{1}{0.700} = 1.43$$

(i) This step is optional

- A new Ranger | Dust has a factorycalibrated PMX sensor with 1.00 LPM flow
- Twist and pull to remove the PMX inlet
- Attach your reference flow meter to the PMX sensor head with the correct tubing (see parts needed)
- Note the observed flow reading on the reference flow meter, F_R
- Calculate the CORRECTION FACTOR (CF) according to CF = 1.00/F_R
- (i) Note: The presence of the reference flow meter in the flow path causes a restriction that affects the measured flow rate. Hence the measured flow will be less than 1.00 LPM. The CF enables the actual flow (F_A) to be determined. $F_A = CF \times F_B$

Step 3 — Measure the flow

- Twist and pull to remove the PMX inlet
- Attach the flow meter to the PMX sensor head with the correct tubing
- Ensure any other external tubing has been removed from the flow meter (or Ensure flow meter has same tubing as when measuring CF)
- Calculate the actual flow (F_A)
- The acceptable flow criteria for F_A is 1.00 +/- 0.02 LPM.
- (i) If the PMX meets the flow criteria the flow is correct. If the flow is outside the criteria proceed to step 4 to adjust the flow.

Step 4 — Calibrate the flow

Settin			Setting	gs: Calibrat	te	
Sensors	Warming			Re-zero the s	ensor	
Logging	On	>		Fan Speed	297	
Wi-Fi		>		PM Custom F	actors	>
AQI	On	>				
Units		>				
Alarms	Off	>				
Calibrate		>				
System		>				

- Enter the Settings menu by pressing and holding the LEFT ARROW
- Navigate to the Calibrate menu
- Adjust the fan speed higher or lower until the PMX actual flow (FA) falls within 0.98 < F_A < 1.02
- Press the CENTER BUTTON to confirm the selected fan speed
- Hold the LEFT ARROW to return to the main screen
- Refit the PMX inlet

Your PMX is now calibrated.

For further support, contact Aeroqual Support.