aeroqual

Check PCX for leaks

Written By: Kyle Alberti

INTRODUCTION

A leak can be caused by loose connections, worn seals (o-rings) or split tubing.

If a leak occurs, this can affect the flow rate which will have a big impact on the accuracy of the measurement.

To understand how often you should perform this service activity, click here.

• Leak gauge (1)

Step 1 — Enter service mode

Calibration and S	Service 🗸 In	strument	✓ Sale	s & Suppo	ort Demo A	AQY (AQY De	mo-001)	~	
Normal operation									
Calibration	Manual service mode Start								
History	Calibratio	on parar	neters						
Manual Entry 7		NO2 ppb	Ox ppb	O3 ppb	O3 raw	PM2.5 raw µg/m³	PM2.5 µg/m ³	TEMP °⊂	RH %
	Gain	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.00
	Offset	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
	a	1.100		2.550					
	b			1.870					
	Real time measurements								
	Time	NO2 ppb	Ox ppb	O3 ppb	O3 raw	PM2.5 raw µg/m³	PM2.5 µg/m ^a	TEMP °C	RH %
	11:42 a.m.	2.9	29.6	24.2	23.7	1.7	1.1	15.74	86.
	11:41 a.m.	2.8	29.2	24.0	23.5	1.6	1.0	15.63	86.0
	11:40 a.m.	3.1	29.7	24.2	23.8	1.9	1.2	15.60	86.6
	11:39 a.m.	3.6	30.2	24.1	23.7	1.5	1.0	15.55	87.0
	11:38 a.m.	4.7	30.4	23.4	23.0	1.3	0.8	15.48	87.0
	1000 In the second second								

 Enter service mode so any fluctuations in the data caused from this activity can be excluded from air quality reports.

Step 2 — Attach gauge

- Remove the TSP inlet, remove the two O-rings and place the vacuum gauge on the inlet.
- Wait for the gauge to stabilise.
- (i) The gauge should reach at least -40 kPa while power is connected.

Step 3 — Observe pressure change

- Stop the sample pump by removing power from the module
- Count how long it takes for the pressure to change by 10 kPa.
- (i) If the pressure change (leak rate) is greater than 10 kPa in 10 seconds, you'll need to check for loose connections, worn seals (o-rings) or split tubing.
- For example, if the needle moves from -70 kPa to -60 kPa in 20 seconds, this is OK, but if if moves from -70 kPa to -60 Kpa in 8 seconds, this indicates a leak.

Step 4 — Record in journal

- Record the results of this service activity in the monitor's journal.
- Exit service mode.

For further support, contact <u>Technical Support</u>.