# aeroqual

# Adjust flow of gas inlet and replace gas pump

Written By: Tanya Taylor



## INTRODUCTION

If all of your monitor's gas modules show reduced flow, it's likely the gas flow pump is aging. In this situation, you can adjust the flow bypass valve to provide more flow to the module inlets, and return the flow to the expected rate.

If you can't achieve the correct flow rate by adjusting the bypass valve, you may have to replace the gas sample pump.

To understand how often you should perform this service activity, click here.

| TOOLS:                                                  | PARTS:                                         |
|---------------------------------------------------------|------------------------------------------------|
| <ul> <li>Large Phillips head screwdriver (1)</li> </ul> | <ul> <li>Tygon tubing (exhaust) (1)</li> </ul> |
| <ul> <li>Tube cutter (1)</li> </ul>                     | <ul> <li>Sample pump (1)</li> </ul>            |
|                                                         |                                                |

#### Step 1 — Enter service mode

| Newslands        |                           |            |           |           |        |                    |                                       |            |          |
|------------------|---------------------------|------------|-----------|-----------|--------|--------------------|---------------------------------------|------------|----------|
| Normal operation |                           |            |           |           |        |                    |                                       |            |          |
| Calibration      | Manual se                 | rvice mo   | de S      | tart      |        |                    |                                       |            |          |
| History          |                           |            |           |           |        |                    |                                       |            |          |
| Manual Entry     | Calibratic                | on parar   | neters    |           |        |                    |                                       |            |          |
| mandar Linkiy    | <b>_</b>                  | NO2        | Ox<br>ppb | O3<br>ppb | O3 raw | PM2.5 raw          | PM2.5                                 | TEMP<br>°C | RH<br>96 |
|                  | Gain                      | 1.000      | 1.000     | 1.000     | 1.000  | 1.000              | 1.000                                 | 1.000      | 1.00     |
|                  | Offset                    | 0.0        | 0.0       | 0.0       | 0.0    | 0.0                | 0.0                                   | 0.00       | 0.0      |
|                  | a                         | 1.100      |           | 2.550     |        |                    |                                       |            |          |
|                  | b                         |            |           | 1.870     |        |                    |                                       |            |          |
|                  | Real time                 | measu      | rements   |           |        |                    |                                       |            |          |
|                  | Time                      | NO2<br>ppb | Ox<br>ppb | O3<br>ppb | O3 raw | PM2.5 raw<br>µg/m³ | РМ2.5<br>µg/m <sup>3</sup>            | TEMP<br>°C | RH<br>%  |
|                  | 1 <mark>1</mark> :42 a.m. | 2.9        | 29.6      | 24.2      | 23.7   | 1.7                | 1.1                                   | 15.74      | 86.      |
|                  | 11:41 a.m.                | 2.8        | 29.2      | 24.0      | 23.5   | 1.6                | 1.0                                   | 15.63      | 86.      |
|                  | 11:40 a.m.                | 3.1        | 29.7      | 24.2      | 23.8   | 1.9                | 1.2                                   | 15.60      | 86.      |
|                  | 11:39 a.m.                | 3.6        | 30.2      | 24.1      | 23.7   | 1.5                | 1.0                                   | 15.55      | 87.      |
|                  | 11:38 a.m.                | 4.7        | 30.4      | 23.4      | 23.0   | 1.3                | 0.8                                   | 15.48      | 87.      |
|                  |                           |            |           |           |        |                    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |            |          |

 Enter service mode so any fluctuations in the data caused from this activity can be excluded from air quality reports.

#### Step 2 — Adjust bypass valve



- <u>Attach a flowmeter to the gas inlet</u> and measure the inlet flow.
- Adjust the pump flow bypass valve until the gas inlet flow rate returns to the expected rate.
- (i) The bypass valve controls the flow rate by diverting a portion of the flow.

#### Step 3 — Replace pump



- (i) If you can't achieve the correct flow rate by adjusting the bypass valve, you may have to replace the sampling pump.
  - Disconnect the pump from the monitor's power system.
  - Unscrew the pump from the bracket.
  - Slide the two connectors out of the Tygon tubing.
  - Cut fresh lengths of Tygon tubing to connect the new pump to the main exhaust tubing.
    - (i) This is important because the barbs on the old pump stretch the tubing when it's removed.
  - Screw the new pump to the bracket and attach it to the monitor's power system.

#### Step 4 — Re-check flow rate



 <u>Re-attach the flowmeter to the gas</u> inlet and check the flow rate is normal.

### Step 5 — Record in journal

| All journal types                       | 1                                                         |                                                      |
|-----------------------------------------|-----------------------------------------------------------|------------------------------------------------------|
| Iser entry   Cloud use                  | r . John Wagner                                           |                                                      |
| in an in the second and                 |                                                           |                                                      |
| 1. Site Inspection:                     | No new local emission sources                             | 2. Instrument inspection:                            |
|                                         | Instrument in good condition                              | Cooling fan operational                              |
| No obstructions to monitoring equipment |                                                           | PM and gas inlet secure                              |
| 3. Equipment:                           | an adilhertan Aired 1000                                  | Instrument has been running at sta                   |
| Aeroqual Gas diluti                     | librator: AIICal 1000                                     |                                                      |
| Aeroqual Elow meter                     | ar AOM P7                                                 | A Gas oxlindars:                                     |
| Actoqual Flow met                       | AGMIN                                                     | CO 1000 ppm in Air (evpin/ Mi                        |
|                                         |                                                           | SO2 20 npm in Air (expiry Ma                         |
|                                         |                                                           | NO2 20 ppm in Air (expiry No                         |
| 4. Flow rate check:                     | Expected flow rate = $0.450$ ml per min.                  |                                                      |
| Measured flow rate = $0.452$ ml per min |                                                           | 5. Open door and change gas inlet f                  |
| Main inlet flow rate                    | OK, individual module flow rates were not measured.       |                                                      |
| 6. Zero calibration                     |                                                           |                                                      |
| All modules passed                      | zero calibration, all modules were stable and all offsets | ts were within acceptable limits.                    |
| 7. Span Calibration                     |                                                           |                                                      |
| CO @ 10.00 pm                           | Module response was 8.95 ppm gain adjustment to 1         | o 1.15 pass                                          |
| SO2 @ 0.2 ppm                           | Module response was 0.210 ppm gain adjustment to          | to 0.92 pass                                         |
| NO2 @ 0.2 ppm                           | Module response was 0.090 ppm gain adjustment to          | to 2.10 pass (module may need replacing soon contact |

- Record the results of this service activity in the monitor's journal.
- Exit service mode.

#### For further support, contact <u>Technical Support.</u>